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Pressure is an under-explored variable in the crystal chemistry
of microporous materials. Depending on the pressure-generating
conditions and the size of the pore-opening of the material,
pressure can be used as a probe to vary the volume in a constant
chemistry1,2 or as a function of the size of pressure-transmitting
medium.3,4 To the best of our knowledge, pressure has not yet
been applied in the investigation of the influence of extra-
framework cations on the flexibility of the molecular sieve
frameworks.

The flexibility of zeolites has long been known from dehydra-
tion and other studies carried out at high temperature.5,6 An
understanding of how these changes occur is important since it
is the regular spacing of pores and channels of molecular
dimensions in these materials that is responsible for their
molecular and ion selectivity. Zeolite RHO is among the most
flexible of microporous materials with variable cation distribu-
tions, depending on the sample conditions. The simple cubic
structure of RHO, as well as the well-known correlation between
its cell length and framework distortion parameter,7 facilitates
studying the systematics of unit cell symmetry versus hydration,
exchangeable cation and cell volume under various nonambient
conditions. We have previously reported that the negative thermal
expansion and “trap door” cation relocations observed in zeolite
RHO result from changes in site-specific interaction between
extra-framework cations and water molecules.8 No experimental
observations were reported on the polyhedral tilt transition of this
type of material at high pressure.9

We recently measured the compressibility of RHO as a function
of the ions occupying the channel system up to 3.0 GPa using a
diamond-anvil cell and a 200µm-focused monochromatic syn-
chrotron X-ray beam.10 Upon pressure increase, each centric form
of RHO (Im3hm) shows different interaction with an alcohol-based
pressure medium and results in relaxation or contraction of the
unit cell volume. In all cases, an acentric form of RHO (I 4h3m)
starts to form in the pressure range between 0.2 and 0.5 GPa.
The compressibility of the acentric structure is closely related to
the initial cation distribution in each sample. The back transition
kinetics seems to be driven by resorption or rehydration, which
is in turn dependent upon the difference in the pore geometry of
the high-pressure A-form.

The evolutions of the unit cell parameters of NaCs-, Cd-, and
Li-forms of zeolite RHO are plotted as a function of pressure
(Figure 1). The pressure-induced phase transformations from
large-volume centric to small-volume acentric structures appear
to be analogous to those driven by dehydration8 and occur
irrespective of the initial extra-framework cation distribution in
these materials; the Cs and Cd occupy a larger double 8-ring
(D8R) site and a single 8-ring site in the structure, respectively,
which blocks access to the interior of the zeolite, whereas the Li
occupies a single 6-ring (S6R) site away from the entry to the
D8R opening to the channel system.

In the case of the NaCs-RHO, the volume of the initial centric
phase expands slightly upon pressure increase, although the effect
is only marginally within the cell parameter errors, probably due
to the exchange of alcohol-bearing pressure media with water
molecules inside the pores. This, along with the increase in the
proportion of the contracted A-phase, will result in the decrease
of the overall volume of the system.
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While the interpretation of the pressure response of low-
pressure C-form is complicated due to the interaction between
cations and different sorbates inside the pores, the observed
compressibility of high-pressure A-form is commensurate with
initial extra-framework cation distribution in each sample. Having
most cations at the S6R site at ambient conditions, Li-RHO
appears to be more compressible at high-pressure than NaCs- and
Cd-RHO, which may well retain their initial cation distribution
around the D8R building unit at elevated pressure, resisting the
collapse of the framework (Figure 1).

It is also interesting to note that the A-form is consistently
more compressible than the C-form. This suggests less internal
pressure of theR-cage in the A-structure, caused by desorption
or dehydration during the phase transition.

The cubic lattice constant of the acentric phase is characterized
by the presence of hysteresis upon pressure release. In the case
of Li-RHO, the transition back to the centric structure on pressure

release is sluggish and occurs over a period of weeks (Figure 2),
whereas NaCs-RHO and Cd-RHO show only a centric and a
mixture of centric and acentric phases immediately upon removal
of the applied pressure, respectively.

It could be envisaged that the back-transformation into the
large-volume C-form upon pressure release is a diffusion-
controlled mechanism. Here the geometry of the pore-opening
(elliptical 8-ring window) plays an important role in resorption
or rehydration and back-transition kinetics. The observed data
indicate the fastest resorption or rehydration in NaCs-RHO and
the slowest in Li-RHO. This is in line with the degree of the
distortion parameter of the cage opening in each acentric structure.
The ellipticity of the 8-ring opening (∆), which can be extrapo-
lated from its relationship with unit cell length,7,8 increases in
the order of NaCs-RHO (∆ ) 1.67), Cd-RHO (∆ ) 2.14) and
Li-RHO (∆ ) 2.20) at 1.5 GPa.

The peak half-width of the A-phase is consistently larger than
its C-counterpart (Figure 2). This is another indication of the phase
transition being driven by sorption/desorption processes. The
difference in the internal and external pressure of the cages in
the A-form, presumably caused by desorption or dehydration, will
generate deviatoric stress and peak-broadening, which is then
released on resorption or rehydration and transition back to the
large-volume C-form.

Despite the evidence of structural changes in RHO as a function
of pressure, details of cation-specific pressure responses and
sorption mechanisms, which are crucial to understanding the
structure-property relationship in this type of framework materi-
als, are not yet clear. To clear these ambiguities, high-intensity
neutron diffraction data will be collected for Rietveld structure
analyses.
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Figure 1. Changes in cubic cell constant (a, Å) of (a) NaCs-RHO (b)
Cd-RHO, and (c) Li-RHO as a function of pressure. Esd’s are multiplied
by 3 at each point. Schematic diagrams illustrate theR-cages in the C-
and A-structures. Extra-framework cations are not shown.

Figure 2. Changes in powder diffraction patterns of Li-RHO as a function
of time after pressure release. Intensities are in relative scale.
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